Photonic Lanterns for Optical Communications

NASA

Completed Technology Project (2017 - 2018)

Project Introduction

We propose to investigate the use of photonic lanterns for free space optical communications. Photonic lanterns have the potential to provide a pathway to lowering the cost and complexity of future optical ground stations by eliminating the need for extremely costly Adaptive Optics. In coherent optical communications, they also offer the possibility of arraying small low cost receive telescopes to provide greater collection area at much lower cost than a single large aperture receiver.


Anticipated Benefits

Photonic lanterns will possibly allow us to collect the signal from a laser communication downlink and couple it to single mode fibers without the use of Adaptive Optics.

By eliminating the need for adaptive optics on ground terminals, the cost and complexity would be greatly reduced. It is hoped that this proposed work could eventually be used in subsequent years to create a demonstration ground receiver for LCRD, or some other NASA laser communications mission.

By starting this work now, we have the possibility of developing it in time to demonstrate it with LCRD when it comes online and also possibly demonstrating it on the upcoming ORION lasercom mission.

Primary U.S. Work Locations and Key Partners

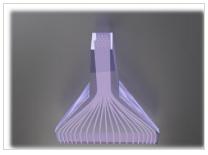
PL

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3
Supported Mission Type	3

Center Independent Research & Development: GSFC IRAD

Photonic Lanterns for Optical Communications



Completed Technology Project (2017 - 2018)

Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead	NASA	Greenbelt,
	Organization	Center	Maryland
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

Primary U.S. Work Locations		
Maryland	Ohio	
Outside the United States		

Images

Photonic Lantern PL (https://techport.nasa.gov/imag e/28280)

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Independent Research & Development: GSFC IRAD

Project Management

Program Manager:

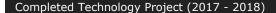
Peter M Hughes

Project Managers:

Terence A Doiron Timothy D Beach Lavida D Cooper Jason M Mitchell

Principal Investigator:

Robert E Lafon


Co-Investigators:

Sarah A Tedder Armen Caroglanian

Center Independent Research & Development: GSFC IRAD

Photonic Lanterns for Optical Communications

Estimated End: 5 1 2 3 4 5 6 7 8 9 Applied Research Development Demo & Test

Technology Areas

Primary:

- TX05 Communications, Navigation, and Orbital Debris Tracking and Characterization Systems
 - ☐ TX05.1 Optical Communications
 - ☐ TX05.1.5 Atmospheric Mitigation

Target Destinations

The Moon, Mars, Others Inside the Solar System

Supported Mission Type

Planned Mission (Pull)

